
Stephen Checkoway

Programming Abstractions
Lecture 27: Exam 2 Review

Exam Format

One 4-part programming problem (40 points)

‣ Write code in DrRacket, upload file

Several conceptual problems (60 points)

‣ Short answer or multiple choice

‣ Possibly short code snippets you have to write

1 extra credit programming problem (10 points)

‣ It's significantly more difficult than the other questions; do this last

Exam will be released at 00:01 EDT on Monday

Your solutions are due by 23:59 EDT on Monday

Class time

During Monday's class, I will be in my office, feel free to stop by to ask about

the exam

Possible question topics

Programming language issues

‣ Backtracking

- Single solution

- All solutions

‣ Environments

‣ Lexical vs. dynamic binding

‣ Parameter passing mechanisms

- Pass by value

- Pass by reference

- Pass by name

‣ Closures

Possible question topics

Interpreter project

‣ Datatypes for various constructs (literals, variables, if-then-else, let,

applications)

‣ Environment implementation

‣ How specific expressions are parsed and evaluated

‣ What would happen if we did something differently

Consider a new structure to represent a point in 2D: 

(struct point (x y) #:transparent)

If p is a point created via the point constructor, how would we create a new

point whose fields are the absolute value of the fields in p? (The function

(abs x) returns the absolute value of x.)

A. (map abs p)

B. (list* 'point (map abs (rest p)))

C. (struct point (abs (point-x p)) (abs (point-y p)))

D. (point (abs (point-x p)) (abs (point-y p)))

E. More than one of the above (which?)

6

When parsing a let expression which pieces of information does the parse

tree need to store?

A. An extended environment mapping the symbols in the binding list to their

values and the body expression

B. A list of binding symbols, list of parse trees for the binding expressions,

and the body expression

C. A list of binding symbols, a list of binding values, and the body

expression

D. Any of A, B, or C work

E. Either B or C work, but not A

7

Recall that application expressions(proc exp1 ... expn) work by

evaluating the proc expression and then each of the argument expressions

in order before calling the procedure.

In a language without mutation (e.g., all of MiniSchemes A–E do not have

mutation), it doesn't matter what order the expressions are evaluated in; the

result will be the same. What about a language that supports set!, does

order matter then? Why or why not?

A. Yes it matters (what's an example?)

B. No it doesn't matter (why not?)

C. It depends (in which cases does it matter)

8

What is the value of the expression assuming lexical binding? What about

dynamic binding?

(let* ([x 10]

 [f (λ (z) (* x z))])

 (let ([x 20])

 (f x)))

A. Lexical: 100  

Dynamic: 100

B. Lexical: 100  

Dynamic: 200

C. Lexical: 200  

Dynamic: 100

D. Lexical: 200  

Dynamic: 200

E. Lexical: 200  

Dynamic: 400

9

Consider this Python-like code snippet  

def foo(x):  
 x += 10  
 return x + 1  
def main():  
 y = 1  
 z = foo(y)  
 print(y+z)  
What is printed by main assuming pass-by-value? Assuming pass-by-reference?

A. Value: 13 

Reference: 13

B. Value: 13 

Reference: 23

C. Value: 13 

Reference: 24

D. Value: 23 

Reference: 24

10

Why do we have multiple environments? Why not just have a single

environment where we update the bindings for each let expression or

procedure call?

11

A latin square is an n x n array filled with n different symbols, each occurring

exactly once in each row and in each column. E.g., is a 3 x 3 latin

square.

An n x n latin square can be found using backtracking. What should the

feasible procedure do to check if the next cell in a partial solution can

(potentially) be set to the next value?

In other words, given a partial solution, e.g., and a symbol s ∈ {A, B,

C}, how would you check if the symbol s could be assigned to

the next open cell in the square (the center cell in this example)?

12

A B C

C A B

B C A

A B C

C

What are the lexical addresses (lexical-depth, index) of each of each use of

the highlighted variables?

(define foo

 (λ (x lst)

 (foldr (λ (y acc)

 (if (equal? y x)

 (append lst acc)

 acc))

 empty

 lst)))

13

Different variables can have the same lexical address. Why is that not a

problem?

14

